Monthly Archives: October 2024

These anxieties are founded in the reality of ongoing farm closures throughout the region

In congruence with the vertical metaphors utilized by those on the farm, the remainder of this article will move ethnographically from those considered at the top to those considered at the bottom.This farm is owned and run by third-generation Japanese-Americans whose parents’ generation lost half their land during the internment in the 1940s. Their relatives, with hundreds of acres on Bainbridge Island, Washington, were interned suddenly and the government sold their land out from under them. Those in the Skagit Valley had time to entrust their farm to a white family, and thereby avoided the same fate. Today, the third generation of Tanaka brothers makes up the majority of farm executives. The following are abbreviated profiles of key farm executives, focusing on their anxieties. In these profiles, we see that the growers’ worries are focused on farm survival in a bleak landscape of competition with increasing corporate agribusiness, expanding urban boundaries, and economic globalization. Over the course of this research, many of my friends and family who visited automatically blamed the pickers’ poor living and working conditions on the growers and assumed that these growers could easily rectify the situation. This supposition is supported by other writings on farm workers, most of which describe the details of pickers’ lives but leave out the experiences of the growers . The fact that the perspectives of farm management are generally overlooked encourages readers’ assumptions that growers are wealthy, selfish, or unconcerned. The stark reality and precarious future of the farm described next remind us that the situation is more complex.

The corporatization of US agriculture and the growth of global free markets squeeze growers such that they cannotimagine increasing the pay of the pickers or improving the labor camps without bankrupting the farm. Thus, cannabis vertical farming many of the most powerful inputs into the suffering of farm workers are structural, not willed by individual agents. In this case, structural violence is enacted by market rule and later channeled by international and domestic racism, classism, sexism, and anti-immigrant prejudice . The structural nature of the labor hierarchy comes into further relief when the hopes and values of the growers are considered. The Tanaka Farm executives are ethical, good people who want the best for their workers and their local community. They have a vision of a good society that includes family farming and opportunities for social advancement for all people. They want to treat their workers well and leave a legacy for their children. They participate in churches and non-profit organizations working toward such hopes in society. They asked for my opinions on how the labor camps could be improved for the workers. After a picker strike in which explicit racist treatment of the pickers in the fields was brought to light, the growers were visibly surprised and upset. They promptly instructed all crop managers to treat all workers with respect. Perhaps instead of blaming the growers, it is more appropriate to understand them as human beings doing the best they can in the midst of an unequal and harsh system. Rob Tanaka is a tall, bearded man with a kind, gentle personality. He is in charge of agricultural production of the farm, planning everything from planting to harvest and overseeing those in charge of each crop. His office is located in a small house in the middle of the berry fields, several miles from the main offices. He spends most of his time in this office, although he also works via laptop in the small lounge of the main office building and visits the fields often. His primary concerns relate directly to farming—weather, insects and birds, soil quality, and labor—although he is also concerned by the survival of the farm.

Over several conversations in the small lounge in the main office building, Rob described to me his anxieties related to his work and the farm’s techniques to buffer their vulnerability.In this conversation, Rob indicates his primary worries regarding the most important variables affecting not only his job but the feasibility of the farm business as a whole—labor, weather, urban growth, regulations, and the market. He explains that this family farm has developed a ‘‘portfolio of crops’’ in order to buffer their vulnerability to the market. In another conversation, Rob told me about a recent meeting of the farm executives about being a ‘‘great company.’’ He explained that every time he heard the word ‘‘great’’ all he could see in the discussion was profitability to shareholders. This made him angry and he said, ‘‘We already are a great company, and if this is what being a great company means, then I want to be a good company.’’ He described his frustration with the farm becoming more corporate and bureaucratic. He liked it more when it was a small family business and he ‘‘didn’t have to go through all these hoops to write a check.’’ These excerpts show Rob Tanaka concerned with the farm’s survival for future generations in the midst of a difficult market while resisting becoming another corporate agribusiness.Another of the executives is Tom, a lean white man in his late 40s brought in by the Tanaka family to help the farm compete on the international small fruit market. Tom has an office in the trailer with the other main executive offices, although he has taken more care to decorate it than most, proudly displaying a colorful painting of workers picking strawberries in China—one of the very places against which he is competing. Previously, Tom was in charge of processing and marketing for a large Mexican strawberry producer. At the Tanaka Farm, his job starts before sunrise, when he calls his competitors and potential buyers in Poland, China, and then Chile. Later in the day, he can take breaks to meet friends or eat out. He daily attempts to find a competitive advantage by changing the fruit grown in various fields or by buying fruit from other farms to process and then sell. Over the course of several months, Tom describes the stark competitive disadvantages of the farm in domestic and global terms.Tom paints a stark picture of the effects of global free markets in the context of large economic inequalities. He worries daily about competition with the California variety of berries along with the stretching of its flavor via food science.

Although Tom is dedicated to his job, starting work before the sun rises, he does not have much hope for the future of berry farms in the Pacific Northwest nor in the United States in general. The farm executives are anxious to ensure the survival of the farm for future generations in the midst of bleak economic trends. They work long days, drying cannabis worrying about many variables only partially within their control and doing their best to run a family farm that treats its workers well. They are very aware of their own structural vulnerability. They also have some control over their own schedules. They take breaks when they choose to eat or work out, talk on the phone or meet with a friend. They have comfortable houses, private and clean indoor bathrooms and kitchens, insulation and heating, and quiet. They have private indoor offices with phones and computers as well as employees ‘‘under’’ them .Most of the administrative assistants are white, along with a few Latino US citizens. All are female. They work seated at desks in open spaces withoutprivacy. They are in charge of reception, interacting with white local residents and businesspeople as well as with Mexican farm workers. Sally is the year-round front desk receptionist. She is a lean, white woman, approximately 40 years old, often smiling. She grew up in the same town in which the farm is located and lives with her husband and children in a relatively small house. The reception desk used to face away from the front counter such that anyone entering approached the receptionist’s back. Sally tries to treat the workers well and turning around the desk when she first arrived was one step in this direction. She helped arrange loans for the Mexican farm workers one year when the picking date was moved back and the workers were living out of their cars, waiting without money or food. Crew bosses and farm executives regularly reprimand her for being too nice to the workers. She has been told to be ‘‘more quick,’’ ‘‘less friendly.’’ In addition, she feels disrespected by the people ‘‘above her’’ , treated like a ‘‘peon.’’ They sometimes give her advice on her work or give her jobs to do without the common courtesies of ‘‘please’’ or ‘‘thank you.’’ Maria is 30, a bilingual Latina from Texas. Her great grandparents moved to the United States from Mexico. She lives in the nearest labor camp with heat and insulation. She works several positions May through November, sometimes at the front desk with Sally, sometimes in the portable unit where pickers can ask questions and pick up mail in the afternoon. On Fridays, she works in the wooden shed where paychecks are passed out to workers in a long line. Her first summers on the farm, including the summer she was pregnant, she picked berries and worked with a hoe. After four years with the hoe, she was moved up to deskwork due largely to her ability to speak English fluently. Like many other workers on the farm, she first heard of indigenous Mexicans while working on the farm. She explained her work to me while we sat in the portable, occasionally interrupted by a picker seeking their mail.The crop managers are in charge of all details involved in the efficient production of a specific crop, from plowing to planting, pruning to spraying, picking to delivery, and finally to processing. They have private offices in the field house amidst the berry fields nearby the largest labor camp, although they also spend a fair amount of time walking through the fields overseeing. During harvest, they begin by 5 a.m. seven days a week and finish in the early evening. They can take a break when they choose to eat, run errands, or go quickly home.

The crop managers worry about the availability of machinery, the effects of weather on the crops, and the docility of their labor force. They have some control over how much the pickers are paid, and they have several field bosses below them enforcing their instructions. Jeff is a 30-year-old white man who recently finished a degree in agricultural marketing at a university in California. He manages blueberries and raspberries. Jeff told me about his job as he drove his large white pick-up with two large dogs in back. We drove to an agriculture store to buy large concrete drains for the blueberry fields and to Costco to buy tri-tip steaks for a potluck at his church. He explained several simultaneous tasks in the raspberry fields to illustrate the many things a crop manager has to oversee. The thing that causes him the most anxiety is having multiple bosses on a family farm without a strict chain of command. He also worries about weather, and about harvest crews: ‘‘It is what it is, you know. Sometimes people walk out and sometimes people pick. It’s kind of like the weather, you can’t really predict it and you don’t really have control over it, but usually it ends up working out all right.’’ He went on, ‘‘We make the prices fair, so if the crew walks out [on strike], we just say ‘hey, we’ll be here tomorrow’ and that’s the way it is. They can come back if they want.’’ He told me that all the people on raspberry machines are Latinos from Texas whereas those picking blueberries are ‘‘O-hacan’’ , although he also told me that he cannot really tell the difference. That week, Jeff was in the midst of budgeting for next year, trying to predict the crop yield. He predicts based on bud count: for each fruit bud in the fall, he expects seven berries the following summer, although a freeze could make the fruit smaller or kill the buds altogether.Several supervisors, often called ‘‘crew bosses,’’ work under each crop manager. Each directs a crew of 10 to 20 pickers. They walk through the fields, inspecting and telling workers to pick more quickly and carefully.

Fields were sampled mid-season at peak vegetative growth when crop nitrogen demand was the highest

Essentially, farmers were asked, “Can you think of a field that you would consider ‘least challenging’ in terms of building soil fertility on your farm?” and “Can you also think of a field that you would consider ‘most challenging’ in terms of building soil fertility on your farm?” . Farmers would often select several fields, and through back-and-forth dialogue with the field researcher, together would arrive at a final field selected for each category . Only fields with all summer vegetable row crops were selected for sampling. For each site, farmers delineated specific management practices, including information about crop history and crop rotations, bed prepping if applicable, the number of tillage passes and depth of tillage, rate of additional N-based fertilizer inputs, and type of irrigation applied. Following field site selection, soil sampling was designed to capture indicators of soil fertility in the bulk soil at a single timepoint. This sampling approach was intended to provide a snapshot of on-farm soil health and fertility. Because the farms involved generally grow a wide range of vegetable crops, we designed the study to have greater inference space than a single crop, even at the expense of adding variability. As such, we collected bulk soil samples that we did not expect to be strongly influenced by the particular crop present. Field sampling occurred over the course of four weeks in July 2019. To sample each site, a random 10m by 20m transect area was placed on the field across three rows of the same crop. Within the transect area, vertical grow system three composite samples each based on five sub-samples were collected approximately 30cm from a plant at a depth of 20cm using an auger .

Subsamples were composited on site and mixed thoroughly by hand for 5 minutes before being placed on ice and immediately transported back to the laboratory.Soil samples were preserved on ice until processed within several hours of field extraction. Each sample was sieved to 4mm and then either air dried, extracted with 0.5M K2SO4, or utilized to measure net mineralization and nitrification . A batch of air-dried samples were measured for gravimetric water content , which was determined by drying fresh soils samples at 105oC for 48 hours. Moist soils were immediately extracted and analyzed colorimetrically for NH4 + and NO3 – concentrations using modified methods from Miranda et al. and Forster . Additional volume of extracted samples were subsequently frozen for future laboratory analyses. To determine soil textural class, another batch of air-dried samples were further sieved to 2mm and subsequently prepared for analysis using the “micropipette” method . Water holding capacity was determined using the funnel method, adapted from Geisseler et al. , where a jumbo cotton ball thoroughly wetted with deionized water was placed inside the base of a funnel with 100 g soil on top. Deionized water was added and allowed to imbibe into the soil until no water dripped from the funnel. The soil was allowed to drain overnight . A sub-sample of this soil was then weighed and dried for 48 hours at 105oC. The difference following draining and oven drying of a sub-sample was defined as 100% WHC. Additional air-dried samples were sieved to 2mm, ground and then analyzed for total organic carbon , total soil nitrogen , soil protein, and pH at the Ohio State Soil Fertility Lab . The former two analyses were conducted using an elemental analyzer . Soil protein was determined using the autoclaved citrate extractable soil protein method outlined by Hurisso et al. .

Remaining air-dried samples were sieved to 2mm, ground, and then analyzed for POXC using the active carbon method described by Weil et al. , but with modifications as described by Culman et al. . In brief, 2.5g of air-dried soil was placed in a 50mL centrifuge tube with 20mL of 0.02 mol/L KMnO4 solution, shaken on a reciprocal shaker for exactly 2 minutes, and then allowed to settle for 10 minutes. A 0.5mL aliquot of supernatant was added to a second centrifuge tube containing 49.5mL of water for a 1:100 dilution and analyzed at 550 nm. The amount of POXC was determined by the loss of permanganate due to C oxidation . After the initial field visit and following summer field sampling, all 13 farmers were contacted to participate in a follow up visit to their farm, which consisted of a semi-structured interview followed by a brief survey. The semi-structured interview is the most standard technique for gathering local knowledge . These in-depth interviews allowed us to ask the same questions of each farmer so that comparisons between interviews could be made. Inperson interviews were conducted in the winter, between December 2019 – February 2020; three interviews were conducted in December 2020. All interviews were recorded with permission from the farmer and lasted about 2 hours. To develop interview questions for the semi-structured interviews , we established initial topics and thematic sections first. We consulted with two organic farmers to develop final interview questions. The final format of the semi-structured interviews was designed to encourage deep knowledge sharing. For example, the interview questions were structured such that questions revisited topics to allow interviewees to expand on and deepen their answer with each subsequent version of the question. Certain questions attempted to understand farmer perspectives from multiple angles and avoided scientific jargon or frameworks whenever possible.

Most questions promoted open ended responses to elicit the full range of possible responses from farmers. We used an openended, qualitative approach that relies on in-depth and in-person interviews to study farmer knowledge . In the semi-structured interview, farmers were asked a range of questions that included: their personal background with farming and the history of their farm operation, their general farm management approaches, as well as soil management approaches specific to soil health and soil fertility, such as key nutrients in their consideration of soil fertility, and their thoughts on soil tests . A brief in-person survey that asked several key demographic questions was administered at the end of the semistructured interviews. Interviews were transcribed, reviewed for accuracy, and uploaded to NVivo 12, a software tool used to categorize and organize themes systematically based on research questions . Through structured analysis of the interview transcripts, key themes were identified and then a codebook was constructed to systematically categorize data related to soil health and soil fertility . We summarize these results in table form. To unpack differences between Fields A and Fields B across all farms, we applied a multi-step approach. We first conducted a preliminary, global comparison between Fields A and Fields B across all farms using a one-way analysis of variance to determine if Fields A were significantly different from Fields B for each indicator for soil fertility. Then, to develop a basis for further comparison of Fields A and Fields B, we considered potential links between management and soil fertility. To do so, we developed a gradient among the farms using a range of soil management practices detailed during the initial farm visit. These soil management practices were based on interview data from the initial farm visit, and were also emphasized by farmers as key practices linked to soil fertility. The practices used to inform the gradient included cover crop application, amount of tillage, crop rotation patterns, crop diversity, the use of integrated crop and livestock systems , and the amount of N-based fertilizer application. Cover crop frequency was determined using the average number of cover crop plantings per year, calculated as cover crop planting counts over the course of two growing years for each field site. Tillage encompassed the number of tillage passes a farmer performed per field site per season. To quantify crop rotation, a rotational complexity index was calculated for each site using the formula outlined by Socolar et al. . To calculate crop diversity, cannabis grow supplies we focused on crop abundance, the total number of crops grown per year at the whole farm level was divided by the total acreage farmed. To determine ICLS, an index was created based on the number and type of animals utilized . Lastly, we calculated the amount of additional N-based fertilizer applied to each field . In order to group, visualize, and further explore links with indicators for soil fertility, all soil management variables were standardized , and then used in a principal components analysis using the factoextra package in R . In short, these independent management variables were used to create a composite of several management variables. Principal components with eigenvalues greater than 1.0 were retained. To establish the gradient in management, we plotted all 13 farms using the first two principal components, and ordered the farms based on spatial relationships that arose from this visualization using the nearest neighbor analysis . To further explore links between management and soil fertility, we used the results from the PCA to formalize a gradient in management across all farms, and then used this gradient as the basis for comparison between Field A and Field B across all indicators for soil fertility. Using the ggplot and tidyverse packages , we displayed the difference in values between Field A and Field B for each indicator for soil fertility sampled at each farm using bar plots. We also included error bars to show the range of uncertainty in these indicators for soil fertility.

Lastly, we further compared Field A and Field B for each farm using radar plots. To generate the radar plots, we first scaled each soil indicator from 0 to 1. Using Jenks natural breaks optimization, we then grouped each farm based on low, medium, and high N-based fertilizer application, as this soil management metric was the strongest coefficient loading from the first principal component . Using the fmsb package in R , we used an averaging approach for each level of N-based fertilizer application to create three radar plots that each compared Field A and Field B across the eight indicators for soil fertility. Farmers provided an overview of their farm operation, including farm size , the total number of crops each farm planted per growing season at the whole farm level, the types of crops planted in their field during the initial field visit , the type and amount of nitrogen-based fertilizer they applied on farm, and key aspects of soil health in their own words . Farm sizes ranged from 15 to 800 acres, with about one third of farms in the 15 – 50-acre range, another third in the 100 – 450-acre range, and roughly a final third in the 500 – 800 acre-range. Farmers grew primarily summer crops, including tomato, a variety of cucurbits, strawberry, herbs, nightshades, root vegetables, and sunflower/safflower for oil. Farmers reported applying a range of external N-based organic fertilizers, including fish emulsion, Wiserg , pelleted chicken manure, and seabird guano, at varying rates . On the low end, farmers applied <1 kg-N/acre, and on the high end, farmers applied 90 – 180 kg-N/acre per season. About a third of farmers applied 2 – 25 kg-N/acre of N-based fertilizer. Farmer responses for describing key aspects of soil health were relatively similar and overlapped considerably in content and language . Specifically, farmers usually emphasized the importance of maintaining soil life and/or soil biology, promoting diversity, limiting soil compaction and minimizing disturbance to soil, and maintaining good soil structure and moisture. Several farmers also touched on the importance of using crops as indicators for monitoring soil health and the importance of limiting pests and disease. Discussion of the importance of promoting soil life, soil biology, and microbial and fungal activity had the highest count among farmers with ten mentions across the 13 farmers interviewed. Next to this topic, minimizing tillage and soil disturbance was the second most discussed with six of 13 farmers highlighting this key aspect of soil health. The importance of crop health as an indicator for soil health also surfaced for five out of 13 farmers. In addition to discussing soil health more broadly, farmers also provided in-depth responses to a series of questions related to soil fertility—such as key nutrients of interest on their farm, details about their fertility program, and the usefulness of soil tests in their farm operation— summarized in Table 2. When asked to elaborate on the extent to which they considered key nutrients, a handful of farmers readily listed several nutrients, including nitrogen, phosphorous, potassium , and other general macronutrients as well as one micronutrient .

Deionized water was added and allowed to imbibe into the soil until no water dripped from the funnel

To understand crop available N more holistically, there is a need to measure actual flow rates of soil N—in addition to—static pools of inorganic N . Soil indicators that adequately capture N availability to crops are therefore necessary to move beyond the legacy of the Law of the Minimum in organic agriculture. Unpacking the soil processes that mediate flows of N may ultimately provide a more accurate characterization of soil N cycling and in turn, N availability to crops. Unfortunately, gross N mineralization and nitrification rates are very difficult to measure in practice, particularly on working organic farms . While net N flows are easier to measure in comparison to gross N flows and can provide a useful measure of N cycling dynamics as a complement to measurements of inorganic N pools, net N flows still pose serious limitations— namely that net rates cannot detect plant-soil-microbe interactions and therefore are not adequate as metrics for determining crop available N . In particular, relying on net N flows as a measure of N availability does not account for the ability of plants to compete for inorganic N, and assumes plants take up inorganic N only after microbial N demands are satisfied . It is also possible that measuring soil organic matter pools could help indicate N availability because SOM supports microbial abundance and activity, and because SOM is also the source of substrates for N mineralization . Several studies have proposed measuring soil organic matter levels to complement measuring inorganic N pools, understand soil N cycling, dry racks for weed and infer N availability . Assessing the total quantity of organic carbon and nitrogen within soil organic matter represents one established method for measuring levels of soil organic matter, and is morereadily measurable than gross N rates.

Additional indicators for quantifying “labile” pools of organic matter, such as POXC and soil protein, have also become more widely studied in recent years, and applied on organic farms as well . When used in combination with more established soil indicators that measure organic C and N pools , this suite of indicators may potentially provide added insight to understanding crop available N . Importantly, applied together these four indicators for soil organic matter levels may also more readily and accurately serve as a proxy for soil quality—generally defined as a soil’s ability to perform essential ecological functions key to sustaining a farm operation . Despite the availability of these soil indicators, very few studies have systematically examined the way in which SOM levels on working farms compare to N cycling processes, and specifically how SOM levels compare to microbially mediated gross N rates. Further, it is still unclear to what degree the interactions between soil edaphic characteristics and soil management influence N cycling and N availability to crops . For instance, soil texture may play a mediating role in N cycling, where soils high in clay content may limit substrate availability as well as access to oxygen, which in turn, may restrict the efficiency of N cycling . In this sense, it is important to understand the role that soil edaphic characteristics play in order to identify the underlying baseline limits imposed by the soil itself. Equally important to consider is the role of soil management in mediating N cycling. Compared to controlled experiments, soil management regimes on working farms can be more complex and nonlinear in nature due to multiple interacting practices applied over the span of several years, and even multiple decades. To date, a handful of studies conducted on working farms have examined tradeoffs among different management systems , though few such studies examine the cumulative effects of multiple management practices across a gradient of working organic farms. However, understanding the cumulative effects of management practices is key to link soil management to N cycling on working farms .

Likewise, it is important to examine the ways in which local soil edaphic characteristics may limit farmers’ ability to improve soil quality through management practices. Though underutilized in this context, the development of farm typologies presents a useful approach to quantitatively integrate the heterogeneity in management on working organic farms . Broadly, typologies allow for the categorization of different types of organic agriculture and provide a way to synthesize the complexity of agricultural systems . Previous studies that make use of farm typologies found that differences in total soil N across farms are largely defined by levels of soil organic matter. To address these questions, we conducted field research at 27 farm field sites in Yolo County, California, USA, and used four commonly available indicators of soil organic matter to classify farm field sites into farm types via k-means cluster analysis. Using farm typologies identified, we examined the extent to which soil texture and/or soil management practices influenced these measured soil indicators across all working organic farms, using Linear Discriminant Analysis and Variation Partitioning Analysis . We then determined the extent to which gross N cycling rates and other soil N indicators differed across these farm types. Lastly, we developed a linear mixed model to understand the key factors most useful for predicting potential gross N cycling rates along a continuous gradient, incorporating soil indicators, on-farm management practices, and soil texture data. Our study highlights the usefulness of soil indicators towards understanding plant-soil-microbe dynamics that underpin crop N availability on working organic farms. While we found measurable differences among farms based on soil organic matter, strongly influenced by soil texture and management, these differences did not translate for N cycling indicators measured here. Though N cycling is strongly linked to soil organic matter, indicators for soil organic matter are not strong predictors of N cycling rates.All farm sites were on similar parent material according to soil survey data .

All fields had soil textural class that was either loam, clay loam, or silty clay loam, based on soil texture analyses. To identify potential participants for this study, we first consulted the USDA Organic Integrity database and assembled a comprehensive list of all organic farms in Yolo County . Next, with input from the University of California Cooperative Extension Small Farms Advisor for Yolo County, we narrowed the list of potential farms by applying several criteria for this study: 1) grow fruit, vegetables, and other diversified crops; 2) located within Yolo County; 3) at least 10 years of experience in organic farming; 4) at least five years of farming on the same land. This significantly reduced the pool of potential participants to 16 possible farms. In the end, 13 organic farms and 1 local research station agreed to an initial field interview in early summer 2019 and field sampling in mid-summer 2019. Farmers who agreed to participate were not asked to change their management or planting plans.During the initial field visits in June 2019, two field sites were selected in collaboration with farmers on each participating farm; these sites represented fields in which farmers planned to grow summer vegetables. Therefore, only fields with all summer vegetable row crops were selected for sampling. At this time, farmers also discussed management practices applied for each field site, including information about crop history and rotations, bed prepping if applicable, tillage, organic fertilizer input, and irrigation . Because of the uniformity of long-term management at the field station , hydroponic rack system only one treatment was selected in collaboration with the Cropping Systems Manager—a tomato field in the organic corn-tomato-cover crop system. Since the farms involved in this study generally grew a wide range of vegetable crops, we designed soil sampling to have greater inference space than a single crop, even at the expense of adding variability. Sampling was therefore designed to capture indicators of nitrogen cycling rates and nitrogen pools in the bulk soil at a single time point. Fields were sampled mid-season near peak vegetative growth when crop nitrogen demand is the highest. Using the planting date and anticipated harvest date for each crop, peak vegetative growth was estimated and used to determine timing of sampling. We collected bulk soil samples that we did not expect to be strongly influenced by the particular crop present. This sampling approach provided a snapshot of on-farm nitrogen cycling. Field sampling occurred over the course of four weeks in July 2019. To sample each site, a random 10m by 20m transect area was placed on the field site across three rows of the same crop, away from field edges. Within the transect area, three composite samples each based on 5 sub-samples were collected approximately 30cm from a plant at a depth of 20cm using an auger . Sub-samples were composited on site, and mixed thoroughly by hand for 5 minutes before being placed on ice and immediately transported back to the laboratory. To determine bulk density , we hammered a steel bulk density core sampler approximately 30cm from a plant at a depth 20cm below the soil surface and recorded the dry weight of this volume to calculate BD; we sampled three replicates per site and averaged these values to calculate final BD measurements for each site. Soil samples were preserved on ice until processed within several hours of field extraction. Each sample was sieved to 4mm and then either air dried, extracted with 0.5M K2SO4, or utilized to measure net and gross N mineralization and nitrification . Air dried samples were measured for gravimetric water content and BD. Gravimetric water content was determined by drying fresh soils samples at 105oC for 48 hrs. Moist soils were immediately extracted and analyzed colorimetrically for NH4 + and NO3 – concentrations using modified methods from Miranda et al. and Forster .

Additional volume of extracted samples were subsequently frozen for future laboratory analyses. To determine soil textural class, air dried samples were sieved to 2mm and subsequently prepared for analysis using the “micropipette” method . Water holding capacity was determined using the funnel method, adapted from Geisseler et al. , where a jumbo cotton ball thoroughly wetted with deionized water was placed inside the base of a funnel with 100g soil on top. The soil was allowed to drain overnight . A sub-sample of this soil was then weighed and dried for 48 hours at 105oC. The difference following draining and oven drying of a sub-sample was defined as 100% WHC. Air dried samples were sieved to 2mm, ground, and then analyzed for total soil N and total organic C using an elemental analyzer at the Ohio State Soil Fertility Lab ; additional soil data including pH and soil protein were also measured at this lab. Soil protein was determined using the autoclaved citrate extractable soil protein method outlined by Hurisso et al. . Additional air-dried samples were sieved to 2mm, ground, and then analyzed for POXC using the active carbon method described by Weil et al. , but with modifications as described by Culman et al. . In brief, 2.5g of air-dried soil was placed in a 50mL centrifuge tube with 20mL of 0.02 mol/L KMnO4 solution, shaken on a reciprocal shaker for exactly 2 minutes, and then allowed to settle for 10 minutes. A 0.5-mL aliquot of supernatant was added to a second centrifuge tube containing 49.5mL of water for a 1:100 dilution and analyzed at 550 nm. The amount of POXC was determined by the loss of permanganate due to C oxidation .To measure gross N mineralization and nitrification in soil samples, we applied an isotope pool dilution approach, adapted from Braun et al. . This method is based on three underlying assumptions listed by Kirkham & Bartholomew : 1) microorganisms in soil do not discriminate between 15N and 14N; 2) rates of processes measured remain constant over the incubation period; and 3) 15N assimilated during the incubation period is not remineralized. To prepare soil samples for IPD, we adjusted soils to approximately 40% WHC prior to incubation with deionized water. Next, four sets of 40g of fresh soil per sub-sample were weighed into specimen cups and covered with parafilm. Based on initial NH4 + and NO3 – concentrations determined above, a maximum of 20% of the initial NH4 + and NO3 – concentrations was added as either 15N-NH4 + or 15N-NO3 – tracer solution at 10 atom%; the tracer solution also raised each sub-sample soil water content to 60% WHC.

The relationship between maize agricultural fields and forest systems is critical

Jones and Halstead demonstrate this same concept with maslins in Europe, where minor contaminants such as wild herbaceous species are difficult to remove and also tend to be tolerated within agricultural fields. When the life forms of the weedy species identified within Cerén milpas are taken into consideration, it becomes apparent that the majority of these weeds would have been manageable if desired. The majority of weedy seeds and achenes recovered from the maize agricultural fields at Cerén come from annual plants , which would have been relatively easy to control by farmers. Annuals that only live for a single season and generally have more shallow root systems can be removed much more effectively than perennial weeds . Annual weeds do grow much more rapidly than perennials , but the deeper root system of perennials make them considerably more difficult to control. Perennial weeds have a minimal presence within the fields at Cerén, both in terms of quantity and ubiquity. The utility and the abundance of the weedy species found within these agricultural fields raise speculations concerning whether or not these species were deliberately cultivated here or were tolerated. The dichotomy between wild and cultivated food plants does not have a clear distinction; many wild species are thought to actually fall along a continuum where various levels of intervention and human management take place during growth cycles . Cerén farmers clearly managed the landscape in a manner that would have allowed for harvest from both agricultural and non-agricultural species simultaneously. Ethnographic work in Mesoamerica has suggested that the main goal of agriculture for the Maya is to “use the land constantly and keep it covered, as far as possible, with useful plants” .

Farmers aim to design agricultural systems that yield the greatest return. Perhaps these ancient agriculturalists conceptualized weedy plants in a much different way than modern views on such plants. The Cerén farmers tolerated and possibly even encouraged the growth of wild and weedy species within their maize fields. All of the weedy species recovered from these fields have known uses nutritionally, medicinally, pipp racking system or for other purposes where they were incorporated into ceremonial activities or valued as a decoration . Amaranthus, Crotalaria, and Portulaca are all significant contributors towards Mesoamerican diets today and are often intentionally integrated into milpa agroecosystems . Kekchi villagers in Belize only remove weeds if a particularly dangerous variety has encroached, such as those with thorns or spines . The Kekchi Maya do not view weeds as a threat to their crops and consider their constant removal to be futile. Weeds can be useful additions whether fertilizing the soil, increasing moisture, or serving as a foodstuff. In fact, milpa agricultural systems in Mesoamerica commonly incorporate weedy species that are considered nutritious and edible, what is called quelites . Ethnobotanical records show that the majority of species procured for medicinal purposes are collected from disturbed habitats, such as agricultural fields, where weeds are predominant . Nine of the wild and weedy species within the Cerén fields have known medicinal applications to present day Mesoamerican groups . Eleven of them are edible and are incorporated into meals as herbs. Amaranth was the second most ubiquitous herb within the fields, occurring in all operations excavated except for Op. AN, and is an important edible green and grain throughout Mesoamerica . The overwhelming amount of Spilanthes acmella achenes recovered could have been used as an herb or spice to flavor daily meals.

The S. acmella achenes were so abundant that their distribution within agricultural contexts can reveal how the herb is significantly more prevalent within the fields closest to the households , suggesting that the farmers encouraged its growth. This follows Killion’s assessment that mono-cropped agricultural fields may have been farther from domestic structures, whereas multicropped or polyculture fields would have been located closer to where people lived. Alternatively, farmers may be more tolerant of weeds during the final stage of a cultivation cycle, as the maize crop is ready to be harvested . Many of the maize stalks recovered here via plaster casts were bent over so that they can dry within the fields , as if the agriculturalists were just about to collect that season’s harvest. The bent stalks prevent moisture from entering the fruits since water can no longer be taken up through the stem and rain can no longer enter the cobs as easily either. The apparent abundance of wild and weedy species within Cerén’s milpas provides further evidence that these fields were at the end of their growing season and perhaps the weedy herbs were simply not an issue that required manual removal. Many milpa agroecosystems burn the entire field in order to prepare the landscape for the next planting cycle, thus managing any weed populations that had become overgrown. Relatedly, it has been documented that the Lakandon Maya take ashes from piles of collected weeds and leftover crop residue and spread them throughout their fields to provide organic matter as a fertilizer . Since the soil samples collected for flotation in this study were taken from the interior of the agricultural ridges, it is unlikely that these herbs were only present from burned organic matter spread throughout the area. If this was the case, the distribution of the weedy species would be more irregular, rather than the pattern of weedy seeds being more prevalent in fields closer to the village structures . It is more probable that their existence in the flotation samples is due to their growth within the fields.

These weeds’ strong presence in the fields suggests that they could have held a positive relationship with the villagers and were part of a complex agricultural system; at the very least the weedy species were tolerated within the fields. Recent excavations at the site encountered a roadway feature, a sacbe, leading south out of the village, likely beginning near the village plaza . ‘Sacbe’ is the Maya term for a white road; sacbeob were typically constructed using a white material such as plaster. In the case of Cerén, the causeway was covered with a layer of Tierra Blanca Joven, a white volcanic ash derived from Ilopango, and was about 2 m in width and elevated an average of 20 cm above the ground surface . The earthen sacbe found traveling through the maize agricultural fields could be interpreted as a boundary marker between agricultural plots. During the 2013 excavations, more than one maize field was often present within each operation, separated by the causeway . When the paleoethnobotanical remains recovered from the agricultural fields on either side of the causeway are compared, management practices differ between the western and eastern milpas. The western fields reveal a larger percentage of weedy species per sample than the eastern fields . Yet, the eastern fields exhibit a more diverse assemblage of weedy species compared to the western fields. This distinction could indicate varying levels of attention to weed removal in terms of time and intensity. This variation suggests that different individuals or households practiced varying agricultural management strategies, perhaps even distinct timings for planting, pipp vertical racks and that the earthen sacbe served as a boundary marker within the fields. Perhaps the varying presence of weedy species between the eastern and western fields is also indicative of varying perceptions of what a “weed” is to the different farmers tending these fields. Since the western fields exhibits a more limited set of weedy species, the agriculturalists tending this space may have had a more limited set of weedy species that they considered to be of value. The weedy species in the western fields are more limited to those that would have been used as nutritional herbs and foodstuffs, whereas the eastern fields’ more diverse weed assemblage includes more species that have known medicinal applications. Sheets and Dixon characterize this milpa area as the intermediate agricultural zone at Cerén, which exhibits irregular fallowed areas and a great variability in cultivation strategies. Each household likely devoted varying amounts of time toward gardening and management of their fields, with weed removal taking place secondary to other tasks, if at all. The distribution of the most abundant herbaceous species in the assemblage, S. acmella , across the maize agricultural fields reveals a lower abundance of these achenes within the fields closer to the village center. Around roughly 40 m south of the village plaza , the maize agricultural fields begin to exhibit significantly lower counts of herbaceous species within the flotation samples. The species is still quite prevalent in this area, but only amounts to at most half of the quantity of achenes recovered from field contexts closest to the main village. This stark contrast could be indicative of a possible boundary within the milpa where different farmers were responsible for managing the fields to the north and south of Op. AI.

Perhaps the farmer who managed the milpa closest to the plaza was more tolerant of wild and weedy plants compared to the one who managed the area farther away from the village. Variation in management of agricultural fields is also visible within the manioc fields south of the village. While the composition of the manioc beds differs greatly from both the home gardens and the milpas in that it was apparently monocultural, each manioc field was managed by individual cultivators and families, as evidenced by land use lines encountered in 2009 excavations . The land use lines were also aligned 30° east of north, just as the structures and milpas were. The community shares this dominant organizational scheme related to the importance of water coming from the river. Land was still subdivided into distinct plots with clear access by individual cultivators and households. Also found within the agricultural field excavations were quite large carbonized wood fragments from fallen branches in the middle of the maize fields, identified through anthracological analysis. The ancient Maya did not necessarily clear their land of all existing plants in order to grow their crops , so the practice of leaving some trees still standing in the middle of the fields should not be a surprise. We see at least two examples of large branches found within the agricultural fields, Terminalia buceras C. Wright, better known as the bullet tree , and Clusia sp., or what is known as matapalo . These branches suggest that forest taxa were not completely eradicated in ancient Mesoamerican agricultural systems. T. buceras is considered a hard, durable wood so it is commonly used in construction, additionally tannin can be extracted from the bark . The black bark is used medicinally to treat skin eruptions . The wood charcoal from the T. buceras was located within Operation Y , located among the agricultural fields at Cerén and adjacent to a possible boundary marker between two maize fields. This marker was an eroded furrow that was not cultivated. Small eroded furrows throughout the milpas suggest a delineation of farming duties between the various households. This eroded surco could have possibly separated a northern from a southern section of the maize agricultural field. Since large quantities of T. buceras charcoal were recovered from this location, it is possible that the tree once stood near this location and could have also served as a boundary marker. The matapalo branches were recovered from Operation AD, again an agricultural context, and it lies just east of where the rubber tree branch fragments were found. The charred remains were recovered in a stratum of ash that would have been deposited after the Cerén inhabitants evacuated the village . Because of this, we know that these charred remains are part of a tree that remained standing until the very hot tephra [composing Unit 4] landed, with larger particles hotter than 575 °C . This species is known to have been used by Mesoamericans medicinally with the latex used to treat toothaches and the wood also has been used for construction and as a fuel source. Forest ecosystems attract many pollinators, so incorporating them within close proximity to agriculture, perhaps on the margins, can be extremely beneficial. Additionally, the accumulation of plant litter on forest floors can serve as fertilizer for agricultural systems and tree root systems can help prevent erosion . Ethnographic work in the Sierra Tarahumara shows that over seventy percent of food resources for communities in that region comes from forest ecosystems , so their incorporation into agricultural systems makes sense.

We also used the constraints identified by farmers to map areas most likely to be suitable for future dry farming

Dry farming may therefore be to playing a role in an agroecological transition in the region, buoying small-scale, thought-intensive management styles with access to a steady income source and consumer base. However, with recent droughts and water shortages in California, dry farming has recently begun to take a more prominent role in social and policy visions for the future of the state’s agricultural system. From the Sustainable Groundwater Management Act to emergency orders in drought years, farmers, researchers, policymakers, and the general public have become acutely aware of California’s currently unsustainable agricultural water use and the economic ramifications of water shortages . As an option that holds promise for maintaining farmer livelihoods while dramatically cutting water use, journalists and policy groups have touted dry farming as an important system to target for significant expansion . Farmers have been considering how to use dry farming to adapt to drier futures for decades, lighting the way for researchers and policymakers’ more recent interest. However, up to this point, farmers’ thoughts and knowledge about dry farming have not been clearly elicited or formally incorporated into conversations about the future of the practice. Grounding conversations about future expansion of the practice in the knowledge of those who are most intimately familiar with its implementation is essential. At this moment of enthusiasm for dry farming, rolling benches we look to practitioners to better understand the current state of dry farming on the Central Coast and its potential for expansion across California, along with the benefits and harms that expansion may carry.

We interviewed ten dry farmers, representing over half of the commercial dry farm tomato operations on the Central Coast, in order to collaboratively answer two central research questions. First, what business and land stewardship practices characterize successful tomato dry farming on California’s Central Coast? And second, what is the potential for dry farming to expand beyond its current adoption while maintaining its identity as a diversified practice that benefits small-scale operations? The majority of these farmers were part of an ongoing participatory research project in which field data were collected to better understand soil fungal communities and nutrient management in dry farm systems . These interviews were extensions of conversations and relationships fostered with farmers throughout the research process. We synthesized farmer insights into nine key themes that broadly describe how dry farming is currently practiced on the Central Coast, its potential to expand in scope , and the opportunities that farmers see as particularly provident for the practice. At this juncture of a high-functioning, low-water management system and urgent political interest in decreasing agricultural water use–in California and across the globe–we conclude by asking how dry farming can be a model for developing systems that decrease water use, and also how dry farming itself may be scaled out to other small-scale, thought-intensive operations without jeopardizing these same farms’ ability to continue profitably growing dry farm produce.Interviews were done with farmers who have commercial operations in California’s northern Central Coast region , as well as one farm with operations in Marin and Sonoma counties. Ranges of coastal mountains govern both climate and land use, trapping cool, moist air, and concentrating farming operations in valleys with fertile, alluvial soils.

The Central Coast is known for its agricultural production–particularly berries, lettuce, and artichokes–that thrive in its fertile soils and mild climates that allow for year-round cultivation. Agricultural revenue in the region totals over $8 billion annually , making it a larger agricultural producer than most countries. This intensive production has led to both high land values and environmental degradation–largely in the form of water contamination–that shape both farmer decision-making and policy interventions . Within this landscape, farms often operate at industrial scales, though many small farms persist. Though cropland is consolidated into fewer, large operations , many smaller farms have found niches selling to local markets.After building relationships over the course of a year-long participatory field research process with eight tomato dry farmers , we conducted semistructured interviews with all farmers involved in that study. We interviewed two additional dry farmers who were not involved in the field project–one whose farm is in Sonoma County , and one whose farm could not participate in the field study due to extensive fire damage–for a total of ten farmers representing eight operations. Interviews were done in person , over the phone , and on Zoom in winter and fall 2022. Because there is no official record of tomato dry farmers in the Central Coast region, we used a snowball approach to identify farms that might be candidates for inclusion, asking each interviewee what other dry farm operations they knew of in the area. We can identify two dry farm tomato growers in the region who were not interviewed in this study, and we estimate that our interview subjects represented 50-75% of commercial dry farm tomato operations on California’s Central Coast. Interviews lasted 1-2 hours and focused on dry farm management practices, environmental constraints, support, water/land access, and economics . Interviews were recorded and transcribed, then analyzed through an interactive process of open, axial, and selective coding .

Data were grouped into three overarching categories , with key themes in each category. Each theme was mentioned in at least half of the interviews.In order to identify areas that might be suitable for future tomato dry farm management, we used farmer-described constraints to make a suitability map using publicly available datasets. We first compiled the environmental constraints on tomato dry farming described in each interview , which fell into three main categories: precipitation, temperature, and soil texture. We limited our analysis to California as the region these farmers are most familiar with to avoid extrapolating constraints beyond the context in which they were given. We used PRISM 30-year climate normals to characterize California’s temperature and precipitation . We used the average constraint named by the farmers; however, because these normals are a 30 year average and will stray significantly from these averages in individual years, particularly in the case of precipitation, we expect that we overestimate the extent of suitable areas. As California’s temperatures get hotter and precipitation becomes increasingly variable with climate change , we expect a further systematic overestimation of suitable areas identified based on the past 30 years of weather data. For the suitability analysis we assigned temperature and soil texture to three categories that were each associated with a score: good , tolerable , and intolerable , while precipitation was divided into ranges that were suitable with no additional irrigation, suitable with additional irrigation, and unsuitable.For temperature, we considered the average maximum temperature in the three hottest months of the growing season , categorizing them separately with the scores described above . We then multiplied these three categorized scores together and took the cube root to get temperature suitability scores for the state, also excluding any areas whose monthly 30-year minimum temperature was above 59o F. We followed a similar procedure for soil texture, using SSURGO estimates of clay content averaged across soil horizons at a 90m resolution . Because farmers did not give numeric estimates of how much clay was needed in dry farm soils, we made sure our defined ‘tolerable’ range encompassed the full range of clay content observed in participating farms’ soils . To define the ‘good’ range , we excluded the farm with the lowest clay content, which was also the only farm where farmers stated that they could not grow tomatoes of a high enough quality to consistently market them as “dry farm.” We multiplied temperature and soil scores to make a preliminary suitability map. This multiplication reflects the interaction between temperature and soil texture, rolling grow table in which good texture can compensate for higher temperatures by increasing soil water holding capacity, and lower temperatures can lessen the evapotranspirative demand that would be particularly problematic for plants growing in sandier soils with a lower soil water holding capacity. We then separated the dataset into three areas based off of farmers’ understandings of where tomato dry farming could occur with no added irrigation and where it could occur with supplemental irrigation , and excluding areas that would not get enough winter rain to grow a suitable winter cover crop . The final map shows suitability scores in all areas that are categorized a ‘cropland’ in the 2019 National Land Cover Database . These areas are superimposed onto groundwater basins categorized as high priority in California’s Sustainable Groundwater Management Act . Crop totals on land that was deemed suitable for tomato dry farm management in these areas were calculated using the 2021 Cropland Data Layer .By focusing on the characteristics that limited water can give a tomato, these farmers highlight a recurring theme in understanding the functional definition of dry farming tomatoes. As the Central Coast faces increasingly limited water availability, the idea of dry farming has gained traction among policymakers purely by virtue of offering a means to continue farming while maintaining a restricted water budget.

However, these farmers are quick to recognize that dry farming is only a management style that they can afford to choose for their operations insofar as it can excite customers and return a reasonable profit. In this way, the product that dry farming creates, which is valuable enough to consumers that they are willing to pay a significant premium for it, is the outcome that defines the management approaches farmers can use. Farmers know that they could alter the schedule for the minimal irrigation they do put on their dry farm tomatoes to increase yields . However, while defining the practice by some maximum threshold of water application, and then choosing to allocate irrigation water to maximize yields, may be appealing from a water savings perspective, farmers recognize that they must define the practice in terms of outcomes and not inputs. Farmers must produce what consumers have come to expect from a dry farm tomato if they are going to make dry farming an economically viable choice for their operation.To better understand where tomatoes might conceivably be farmed in California given the environmental constraints identified above, we modeled dry farm suitability on California cropland as a function of precipitation, temperature, and percent clay in soil. The resulting map shows what lands could potentially support a dry farm crop, with and without supplemental irrigation, using constraints that are relaxed to encompass the least restrictive farmer-elicited constraints . The map therefore errs on the side of including land that is not an ideal candidate for dry farming, rather than leaving off land that may potentially be a good fit. With rising temperatures and less reliable rainfall, this map, which is based off of 30-year normals, likely also systematically overestimates what areas might fall into these thresholds when projecting into future climatic conditions. All areas in blue indicate land that meets a threshold where dry farming could be considered in a non-drought year without adding any irrigation. Areas in orange indicate that, while there is likely enough rain to sustain a winter cover crop, some amount of irrigation would often be needed to grow a successful dry farm crop. Areas in darker colors connote land that falls in conditions that are closer to ideal, whereas lighter colors indicate that more conditions are tolerable, rather than ideal, for dry farming. It is crucial to note that areas that show up as “suitable” on the map–including the most ideal locations–will likely require years of diversified management for soils to build the water holding capacity and fertility that allow for peak dry farm performance. These areas should therefore be considered candidates for long-term dry farm management, rather than ready-to-go dry farm fields. Because the constraints used to build the model were elicited specifically with regard to tomatoes, this of course is not a comprehensive map of everywhere that might be considered for dry farming non-tomato crops. Particularly when it comes to grains and perennials , the range of possible locations is likely much broader. In the case of grains, winter varietals can be planted that take advantage of rain in winter months, while tree crops have far more extensive root systems that can reach water well beyond that which might be available to a tomato, in both cases relaxing the temperature and precipitation constraints that tomatoes need to survive without irrigation.

Nutrients in surface soil were not correlated with yield or quality

We then correlated fields’ rotational complexity with biophysical and policy outcomes factors, using bootstrapped linear mixed models to account for spatial autocorrelation in the data. By identifying spatially explicit predictors of rotational complexity, we illuminate how top-down policy pressures combine with biophysical conditions to create fine-scale simplification patterns that threaten the quality and long-term productivity of the United States’ most fertile soils.We focused our analysis on the eight Midwestern states with the highest corn acreage 2. We considered the six-year period from 2012 to 2017, which coincides with the introduction of the Renewable Fuel Standard in 2012. After deriving a novel field-scale rotational complexity index , we used spatially blocked bootstrapped regression to assess how key landscape factors associated with this indicator. These statistical methods account for overly confident parameter estimates that arise in naive models due to spatial autocorrelation in the data. All analyses were conducted in R47.As crop rotations continue to simplify in the Midwestern US despite robust evidence demonstrating yield and soil benefits from diversified rotations, our ability to explain and understand these trends will come in part from observing the biophysical and policy influences on farmers’ crop choices at one key scale of management: the field. By developing a novel metric, RCI, that can classify rotational complexity over large areas at the field scale, we open the door to regional analyses that can address the unique landscape conditions that impact farmers’ field-level management choices and their subsequent influence on rotational simplification. We find that as farmers are pushed towards simplification by broad federal policies , hydroponics flood tray physical manifestations of these policies like bio-fuel plants are correlated with intensified simplification pressures.

Similarly, we see that the pressure to build soils and boost crop yields through diversified rotations intensifies in fields with lower land capability, while conversely the negative effects of cropping system simplifications are accentuated on the region’s best soils.RCI uses the sequence of cash crops on a given field as a proxy for crop rotation, and sorts these sequences into scores based on the sequence’s complexity and potential for agro-ecosystem health. Because this metric has not been used in previous analyses, we verified RCI’s validity through comparisons to previous estimates of rotational prevalence in the region. For example, two separate surveys of farmers in the Midwestern US showed that between 24% and 46% report growing “diversified rotations” which we consider to be an RCI of greater than 2.24 . In the present study, 34% of fields had an RCI greater than 2.24. This and further comparisons of RCI to previous work show that RCI is capable of capturing previously-noted trends in the region.The ability to analyze rotations at the field scale across the entire Midwestern US allows us to ask how farmers optimize their rotations in complex economic and biophysical landscapes that include pressures to both simplify and diversify. Several biophysical and policy variables show statistically clear relationships with rotational complexity: high land capability, high rainfall during the growing season, and proximity to bio-fuel plants are all associated with rotational simplification. Given policy incentives, farmers often find that “corn on corn on dark dirt usually pencil out to be the way to go,” with farmers growing corn year after year when high quality soil is available. However, when that proverbial “dark dirt” is not available, calculations are not so simple. If growing conditions are sufficiently poor , these intensive corn systems may not be profitable, and farmers will have to rely more heavily on non-corn crops to maintain crop health and profitability in their fields. We see this dynamic at play with land capability in the present analysis.

Despite—or rather because of— the fact that more diverse rotations improve soils, the most degrading cropping systems counter intuitively tend to occur on the highest quality land. Highly capable lands can be farmed intensively without dipping into a production “danger zone” in years with weather that is historically typical for the region, creating a pattern of land use that is likely to degrade these high quality lands in the long term and potentially jeopardize future yields, particularly in the face of climate change. Recent analyses show that enhanced drought tolerance and resilience for crops is one of the key benefits of diverse crop rotations. In the present analysis, mean rainfall during the growing season correlates positively with rotational simplification. Farmers may therefore be employing crop rotation in areas of low rainfall to achieve production levels that will keep a farm solvent, as was seen with rotational complexity increases in Nebraska during a drought period from 1999 to 2007. This trend is further accentuated by the negative interaction between land capability and rainfall variance in our analysis, where higher rainfall variability leads to even more diverse rotations on marginal lands. Proximity to bio-fuel plants, the main policy indicator in our model, showed a statistically clear trend towards rotational simplification, likely due to increased economic profits. Local corn prices increase by $0.06 – $0.12/bushel in the vicinity of a bio-fuel plant, amplifying incentives to grow corn more frequently. Wang and Ortiz Bobea were surprised not to find an impact of bio-fuel plant proximity on county-level frequencies of corn cropping in their own analysis, and the present analysis—done at a field rather than county scale—shows exactly this expected effect: corn-based rotations are simplified when in closer proximity to a bio-fuel plant. In the current economic and policy landscape, farmers are pushed to simplify rotations through more frequent corn cropping, especially in proximity to bio-fuel plants, while marginal soils and low rainfall pull fields towards more diverse rotations.

RCI’s ability to classify rotational complexity across large regions at the field scale and with low computational cost opens doors to future analyses that explore the interplay between localized landscape conditions, management choices, and agricultural, environmental, and economic outcomes. We see a strong potential to employ this metric not only in new regions, but in analyses that address how results from field experiments with crop rotation may scale up to regional levels. We also note that the metric should be used with caution. For example, because RCI cannot recognize functional groups in crop sequences , it cannot capture the added benefits that diverse functional groups often add to a rotation. In addition, though RCI includes a perennial correction that avoids penalizing multiple consecutive years of perennials the metric likely still underestimates the benefits of perennials in rotations. RCI is neutral to the soil benefits of annuals vs. perennials, while in practice the year-round cover and crop species mixes that often accompany perennials may boost soil benefits beyond those of annuals. Consecutive years of perennials are uncommon in our study area , and we encourage caution before applying the metric to regions with a more substantial perennial presence. We therefore recommend using RCI in studies that explore a wide range of cropping sequences where large differences in RCI are very likely to be meaningful, rather than as a tool to rank sequences that give similar scores. It is also important to note that, though the index can be applied to data of any sequence length, RCI values from different sequence lengths cannot be compared to each other; a rotation that results in a 2.2 from examining a six-year sequence will not be a 2.2 when examining a five or seven-year sequence. We also note that in using crop sequence as a proxy for crop rotation, RCI cannot fully capture the cyclical nature of true crop rotations. Because RCI examines a fixed number of years, hydro flood table it may “split up” identical rotations in ways that give slightly different scores or ABBAAB in a six-year sequence. As these discrepancies will decrease when longer sequences are considered, we recommend applying RCI to sequences that are as long or longer than the longest expected rotation in the study region.We hope to see RCI used in future analyses that extend beyond the Midwest; however, regional and historic patterns of crop production likely influence farmers’ rotational decisions and may render RCI scores calculated from disparate geographical regions difficult to interpret when called into direct comparison. We therefore see great promise in RCI as a rotational metric, and caution against applications that are overly narrow and overly broad .The time period chosen in this study, 2012 – 2017, coincides with the introduction of the Renewable Fuel Standard, or “bio-fuel mandate,” which took full effect in 2012. This policy mandates that 7.5 billion gallons of bio-fuel be blended with gasoline annually, and caused bio-fuel plants to open and local corn prices to soar across the Midwestern US. Now in 2021, there is significant political pressure both to maintain the bio-fuel mandate in its current state and to relax the standards, and new exemptions to the mandate have already caused several bio-fuel plants to close in the region. Given the link between bio-fuel plant proximity and rotational complexity, our analysis suggests that these closures, if continued, would likely be associated with an increase in mean RCI in the Midwestern US. Using our current model, simulations of randomly closing 20 of the 198 bio-fuel plants in the region lead to an increase of 0.003 in average RCI in the region, driven by greater distance to the nearest bio-fuel plant. In turn, increasing average RCI by 0.003 represents, for instance, the equivalent of 41,000 ha of cropland switching from corn-soy rotations to the most diverse rotation possible . Rotational simplification near bio-fuel plants is a pertinent example of the influence that policy can have on farm management decisions and its landscape repercussions.

Bio-fuel mandates are one of several policies, including crop insurance and research funding priorities, that currently maintain the profitability of corn production; however, these policies need not be the ones that define rotational landscapes, and increased funding for policies such as the Conservation Stewardship Program could better align farmers’ economic incentives with improved environmental health. When strong economic incentives encourage rotational simplification, our analysis suggests that it is more likely to occur on land with favorable biophysical conditions for corn growth. With our current policy structure, the highest quality lands in the Midwestern US therefore become the most prone to degradation through intensive management.Changing climates are causing agricultural water shortages at unprecedented scales and magnitudes, especially in regions historically reliant on irrigation. Identifying and understanding systems of farming that allow continuity in farming operations in times of water scarcity is an increasingly urgent need. Vegetable dry farming relies on winter rains stored in soils to reduce irrigation to 0-2 events per season and has become prevalent on California’s Central Coast in recent decades. Until now, this system has been unexplored in scientific literature beyond extension publications, despite its promise as a model for low-water agriculture. Dry farm management presents a unique challenge given the low water content in surface soils that restricts nutrient access in the areas farmers usually target for irrigated fertility management. Managing soil nutrients at depth and potentially the microorganisms that provide plant nutrients and alleviate water stress could be crucial to dry farm success, and we engaged in a collaborative research design process with six farmers managing seven commercial dry farm tomato fields to identify and answer three key management questions: 1. What are the depths at which nutrients influence harvest outcomes given low water content in surface soils? Are commercially available AMF inoculants effective at improving harvest outcomes? How does the broader fungal community change in dry farm soils, and do those changes map to harvest outcomes? Only soil nitrate and ammonium concentrations below 60cm depth were correlated with tomato yield and fruit quality, while blossom end rot negatively correlated with ammonium at 30-60cm. We identified a fungal class, Sordariomycetes, as a “signature” fungal group in dry farm soils that distinguished them from irrigated management and correlated with positive quality outcomes, while commercial AMF inoculation showed little benefit. These findings can inform management practices that optimize fruit yield and quality, and can guide farmers and policy makers alike in efforts to minimize agricultural water use.As rainfall becomes more variable with changing climates, farmers around the world are contending with droughts that are increasing in both intensity and duration. For many farmers, restricted water use has become a constant and looming threat, forcing the agricultural sector to confront a key question: how can we adapt to water scarcity without jeopardizing farmer livelihoods? This question is particularly salient for California’s agricultural system, which has become increasingly fragile in recent decades due to its dependence on a shifting and shrinking water supply.

Each time samples were taken from four depths at each plot

Urban farms are the focal point in Milwaukee, and greening is the focal point in Philadelphia, where the Pennsylvania Horticultural Society gradually evolved its Philadelphia Green program toward blight removal and neighborhood revitalization. In recent years, this framing for the value of urban agriculture has been contested by Soil Generation, a Black- and Brown-led coalition advocating for more permanent gardens, affordable housing, and community control over land use more generally, advancing a new frame that ties urban agriculture’s legitimacy to the stewardship of longtime residents and the unjust history of dispossession they have experienced. In Seattle, the P-Patch program worked to legitimize its activities for the benefits of food production and community-building that community gardens can provide, and advocates with the P-Patch nonprofit refined this narrative over time by articulating how urban agriculture serves as a neighborhood amenity that could ease some of the strain of urban growth while attracting desirable new residents. In all three cities, economic arguments have been central to strengthening the legitimacy of urban agriculture in the eyes of city officials in order to secure more resources and favorable policy for the gardening organizations and their spaces. However, these economically focused arguments also cohere with processes perpetuating inequality in urban environments. In the case of Milwaukee’s employment emphasis and PHS’s revitalization framing, grow rack economically focused arguments have served to reinforce the conception of urban agriculture as a temporary use of urban space that can and should be replaced with more profitable development whenever the opportunity arises.

In Seattle, framing that augments urban agriculture’s legitimacy as a source of livability amidst intensifying urban development overlooks the fact that rapidly appreciating neighborhoods become unlivable for residents at the bottom of the income distribution, who end up with greater food insecurity and likelihood of displacement regardless of garden permanence. Just as the different ways of framing urban agriculture’s benefit have been unequally strong as a claim for garden permanence, the different organizational configurations and environments in each city have been unequally conducive to social movement mobilization that could challenge elite interests and push city officials beyond their original willingness for garden preservation. In terms of the organizational environment, evidence from Milwaukee and Seattle indicates that civic conventions conducive to bottom-up governance work to support the process of legitimizing urban agriculture, but it appears to have been the discursive opportunity structure of mistrusting elites, absent in Milwaukee but present in both Philadelphia and Seattle, that has facilitated mobilization in defense of threatened urban agricultural spaces. Different organizational configurations across the three case-cities are instructive for understanding the dynamics of organizational hybridization, especially from community-based to social movement activities. Across the three cases, I found only one example of a community-based organization effectively taking up the work of a social movement organization —the P-Patch nonprofit. Developed as a parallel organization to support the city’s P-Patch program by providing a forum for volunteer site leaders to share strategies for garden management, the P-Patch nonprofit gained legitimacy as a representative of gardener interests while maintaining an organizational structure independent from the city program that allowed for outsider social movement mobilization when needed.

Both of these features facilitated the P-Patch nonprofit’s success in SMO activities, but these activities were organized on a temporary basis, and their framing reflected the relatively privileged perspectives of the nonprofit’s volunteer leaders. In contrast, Soil Generation has arisen in Philadelphia as a counterpoint to PHS, a CBO that did not prioritize gaining legitimacy from gardeners and has been perceived as coopted because of its close relationship with city leaders. Soil Generation has functioned as a SMO since its inception and has kept up its social movement activities for the long term. With leadership explicitly oriented to the needs of poor people of color, Soil Generation is advancing a frame that re-legitimizes urban agriculture as worthy of permanence, while also insisting on policy that will address the broader needs of the city’s low-income gardeners—especially their need for affordable housing. While not generalizable to all organizations in all cities, comparing the example of Soil Generation to the other organizations in this study suggests that organizations formed with a social movement orientation may simply be better positioned to advocate for policies that run counter to elite interests than organizations formed as community-based organizations to provide services. In Milwaukee, none of the organizations involved in building, maintaining, or advocating for urban gardens can really be considered a social movement organization. The main community-based organization that manages gardens in the city, Milwaukee Urban Gardens and now Groundwork Milwaukee, has occasionally called for gardeners to write letters on behalf of a favorable policy, but the group has never organized to pressure city officials for garden preservation or other policies that go beyond what the city is interested in doing for its own interests.

Similar to PHS in Philadelphia, Groundwork Milwaukee now draws a decent share of its funding from green space maintenance contracts with the city, establishing organizational commitments that would conflict with outsider strategies for social movement mobilization. Across the three case-cities, evidence suggests that the switch from CBO to SMO is challenging because CBOs often must seek resources and legitimacy from city officials, large funders, and other elites; over time, their work as service providers appears to build up connections and commitments to other organizations that can leave them coopted or less focused on the needs of more marginalized members, clients, and constituencies. Of course, this finding only reflects analysis of a small sample of organizations, and additional research with larger samples would be needed to confirm if this pattern is widespread, but it conforms with earlier findings about the process of organizational cooptation over time . While Groundwork Milwaukee provides one example of a CBO unlikely to take up confrontational politics, the Milwaukee Food Council is an organization more like Soil Generation that was formed to advance policy goals, and due to its relative independence from the local government this organization might be better positioned for outsider strategies of social movement mobilization. However, the Milwaukee Food Council mostly counts leaders from other organizations as its members and does not have much of a direct relationship with gardeners or the general public. In other words, unlike Soil Generation, the Milwaukee Food Council has not gained legitimacy as a representative of the city’s gardeners and marginalized residents. Even if the Milwaukee Food Council had legitimacy as a representative of gardeners and a large, active base of supporters to mobilize in the push for more permanent urban agricultural spaces, because of the benefits for which urban agriculture has been legitimized in Milwaukee, the city’s civic conventions, and the political-economic reality in which currently cultivated lots are seen as a potential development lifeline for reviving the city’s economy, this organization would still face a steep challenge in convincing city officials or the general public that permanent gardens are the best policy. Across all three cities, the legitimation activities of garden organizations and the policies they have achieved to increase longevity for the city’s gardens are reflected in the physical manifestations and geographical distribution of gardens. While there are certainly similarities between the community gardens in all three cities, the forms and ideas about urban agriculture that people are likely to encounter as they move through urban space are different. Among the three cities, the prevalent urban agricultural forms in Milwaukee can be understood as the most impermanent. In Milwaukee, one is more likely to observe large, mowed lots with only a few trees or garden beds that represent the legacy of MUG’s early attempts to function as a land trust, which backfired when these sites did not have enough support or interest from nearby residents to be maintained in full form. This particular form is certainly not widespread in Milwaukee, but it is virtually absent in the other case-cities and it serves to reinforce ideas about community gardens as temporary land uses. Another distinct feature of Milwaukee’s urban agriculture landscape is the prevalence of youth job training programs and food businesses that package and distribute items grown on urban farms. Someone moving through the city is as likely to encounter a site where young people work together to tend crops as they are to encounter a community garden with individual plots claimed and cared for by different people. Both of these urban agricultural forms can provide important nutritional and social benefits for people in need, hydroponic rack but the employment and commerce-oriented nature of Milwaukee’s urban agriculture leaves open more possibility for relocating urban agriculture to make way for other kinds of development. In Philadelphia, there are numerous traditional community gardens—certainly more than in Seattle or Milwaukee—but their presence is dwarfed by the 13,000 vacant lots that are maintained with PHS’s signature clean-and-green treatment.

As in Milwaukee, this form of urban agriculture signals impermanence, but unlike the spaces tended by Milwaukee’s youth these sites are not growing food—only trees and a few ornamental plants that can be easily kept up by the circulating maintenance crews. Someone moving through the city is more likely to encounter a clean-and-green lot than a community garden or farm, but many such spaces do exist. Some of these spaces announcing themselves with signs, murals, and tributes to groups who have ensured their existence, while others keep a low profile to avoid what gardeners perceive as the likelihood the city will sell the lot if they learn it has a garden. Regardless of their outward appearance, and despite not being the focus of the legitimizing narrative that PHS amplified for many years, hundreds of gardens in Philadelphia have provided food, a sense of community, and other benefits to residents in many neighborhoods. In Seattle, the most common form of urban agriculture is the P-Patch community garden, most of which have individually tended plots and common areas with space for the public to sit and enjoy urban nature. Someone moving through the city is likely to encounter a P-Patch with signage announcing the program and perhaps an upcoming community event to be held in the space. These elements reflect the strategic efforts that P-Patch advocates have made over the years to bolster the program’s legitimacy in the eyes of city officials and the non-gardening public, given that they have secured virtual permanence for the gardens as a land use, but must still work to maintain the spaces’ public legitimacy and funding. As we consider what form of urban agriculture someone might encounter as they move through each city, we should also consider who is likely to be having the encounter in the first place. Over time, as one part of the wider urban processes of economic competition and land use contestation, organization-led efforts to legitimize and secure urban agricultural spaces have not only influenced the form that these spaces take, but also where the gardens have survived and who is most likely to be occupying nearby urban space to begin with. Milwaukee’s urban agriculture organizations have worked to secure longer leases for community gardens, but they have not succeeded in purchasing and preserving many of the sites, so most of the city’s gardens remain vulnerable to development. The gardens that exist today are generally clustered around the Near North Side, where poverty, unemployment, and food insecurity are high and development pressure has remained low. Based on the demographics of the Near North Side, the people most likely encounter the city’s gardens are low-income Black residents, however my spatial analysis revealed that gardens associated with citywide programs are also relatively more accessible for neighborhoods with higher rates of Hispanic and Asian/Pacific Islander residents than for neighborhoods that are largely white. These gardens appear to be concentrated where the greatest economic need is, but if development pressure in the disinvested neighborhoods were to increase, the gardens will be vulnerable to displacement. In Philadelphia, development pressure has increased quite dramatically in some neighborhoods, displacing gardens and residents alike. PHS’s effort to concentrate greening interventions in specific neighborhoods has proven the revitalization potential of urban agriculture. However, this revitalization focus seems to limit the benefits for the city’s poorest residents. Based on my spatial analysis, the program’s gardens are likely to be closer to neighborhoods with lower poverty rates and higher housing costs .

The strong economy in Seattle has been critical to the expansion of its community gardening program

While Philadelphia definitely needs more affordable housing, the threshold set for “affordable” is 120% of the area median income, or about $73,000 a year. Yet nearly 25% of the city’s population lives under the federal poverty line of $12,490 a year . No housing under the new policy is guaranteed to be affordable for this quarter of the population, nor for anyone in the bottom half of the income distribution, for that matter. Without guaranteeing that it will go to community uses or housing for those most in need, the Land Bank will likely move property back into use at a much higher rate with the new disposition policy. As their recent documents and public statements make clear, Land Bank officials are attempting to respond to criticism from Soil Generation and other community advocates that the process is too slow. However, they are doing so in a context where few resources are flowing toward community housing and the city’s poorest residents, while large amounts of capital are being mobilized for any profitable ventures. Thus, the agency’s reforms are limited by economics and market logic that still hold sway over where and at what price it makes sense to develop land. As it stands in 2021, through the Land Bank and outside of its purview, additional gardens are preserved every year in Philadelphia. These results are achieved through tremendous effort and expense on the part of gardeners, program leaders, and urban agriculture advocates. However, other gardens continue to be lost under the intense development pressure in gentrifying neighborhoods, flood tray and many more gardens still remain vulnerable. Professionalized nonprofits such as PHS and NGT use large donor networks, foundation grants, and insider strategies to nurture political support for urban agriculture and to preserve gardens incrementally.

Soil Generation and the Garden Justice Legal Initiative continue to mobilize and reframe the public conversation around vacant lot disposition, seeking to transform the narrative from one of financial efficiency to one of justice and community control of land. Throughout the implementation of the Land Bank and its biennial strategic planning process, ongoing outsider strategies from these two organizations alongside the Philadelphia Coalition for Affordable Communities , a successor coalition of the CTBVL, have accomplished meaningful progress toward more a transparent and community-oriented land disposition process. Political and economic conditions in Philadelphia still present barriers to garden preservation, and well-resourced developers continue to have advantages in securing vacant land, but the organized efforts underway in Philadelphia—especially the work of Soil Generation and PCAC—represent the most radical movement toward structural change in land use policy of any in the three case-cities at this point. If successful, their work will have an impact on the lives of marginalized Philadelphians that goes far beyond the benefits of well preserved community gardens.Compared to Milwaukee and Philadelphia, Seattle has had both political and economic conditions more favorable to community garden development and preservation. The economy and the revenue-generating tools available in Seattle created opportunities for the city to fund desired public investments, including gardens. With the city’s tech sector thriving, Seattle has been a “winner” in the global competition for urban growth for the last 30 years. In this time, public investments in community gardens, green space and other neighborhood amenities have redoubled Seattle’s appeal to the “creative class” . The favorable political economy in recent decades has helped solidify the status of community gardens as a legitimized, permanent feature of the urban landscape. That said, the popularity and security of Seattle’s gardens do not ensure that they are providing the potential benefits most needed by the city’s marginalized residents.

If the city were facing the kinds of budget crises that Milwaukee and Philadelphia currently confront, open space improvements might not win approval from voters or City Council when tax revenue was direly needed for basic services such as police and schools. Seattle’s city budget contracted in 2000 with the bursting of the dot-com bubble, and again in 2008-2010 during the Great Recession. Otherwise, since the early 1990s, the city budget has increased fairly steadily. The growing technology sector has served as a stronger economic base than more traditional industrial manufacturing during this period, in which outsourcing has led to significant economic impacts in cities like Milwaukee and Philadelphia as described above. Seattle faced population loss between 1960 and 1980, including a steep economic downturn during the “Boeing Bust” when the city’s major manufacturer shed thousands of jobs. However, Seattle began to grow again as the information technology sector expanded, with major companies like Microsoft and Amazon headquartered in the area. The city’s population grew 4.5% from 1980 to 1990, then 9% from 1990 to 2000 , 8% from 2000 to 2010, and a whopping 21% between 2010 and 2020. Economic conditions in Seattle differ significantly from the other case-cities: the poverty rate is 11% , and the median household income of $92,263 is greater than that of Milwaukee and Philadelphia combined. A stronger economy and reasonably comfortable city budget have made allocating public resources to community gardens easier in Seattle than in Milwaukee or Philadelphia. The P-Patch Program is administered by the City, as explained in chapter 2, and public resources have undergirded its entire existence. Seattle has supported gardens as part of its budget since 1973, at first agreeing to pay $950 to cover the property taxes of Rainie Picardo so that his land could continue serving neighbors as a community gardening space. City Council then expanded the program to 10 other sites around the city and took over administration .

For the P-Patch program’s first two decades, the city budget allocated roughly $15,000-50,000 to the program for 1-2 staff positions, plowing costs, and money for tools and materials. In 1983—in part due to contracting federal support for local governments that affected all of the cities in this study—a municipal budget crunch forced cuts in the P-Patch program that led to the first notable site vacancies in the program’s ten-year history. With two part-time staff working far more than the hours they were paid for, and significant volunteer contributions to make up the difference, the program survived and continued to add new sites through the late 1980s. When the city was facing budget cutbacks again in 1992, gardeners organized a letter-writing campaign and visited council members to advocate for fully funding the program. Successful in this effort, they received a $50,000 budget increase for 1993. For the next 14 years, as Seattle’s economy and city budget saw gradual but nearly uninterrupted growth, the P-Patch program garnered increases in staff and funding that enabled them to administer more and more sites. During this period, the program more than doubled in size—from 30 gardens and 2 staff positions in 1993, to almost 70 gardens and 7 staff in 2007. Although the city froze the program staff size during the Great Recession, funding from open space tax levies continued to facilitate expansion in the number of gardens. As of 2021, there are nearly 90 P-Patches reaching across every neighborhood in Seattle. The program is well known and popular, in part because of its expanse and its stable administrative capacity; these features result from the substantial public resources that the City of Seattle has been able to dedicate to the program over the last 40 years. In addition to the annual budget allocation that supports P-Patch administration, the garden program has been able to expand because of funding from tax levies. Washington state allows cities and counties to raise revenue through taxes of different types; many such tax increases require voter approval with turnout requirements and at least 60% support at the ballot. Seattle voters typically see at least one tax levy question on their ballots every year, 4×8 grow tray either for the City of Seattle or for King County. Not all of these measures receive the necessary 60% support, but since 2000 voters have approved several tax levies related to parks and open space improvements at both the city and county levels. These measures have raised hundreds of millions of dollars for parks and open space, including at least $4 million specifically for the acquisition and improvement of P-Patches. Such an infusion of cash into citywide community gardening efforts has only been possible because a) the P-Patch program is a public entity; b) county and city governments in Washington state have the ability to raise revenue with tax levies; and c) the citizens of Seattle and King County are willing to pay higher taxes in order to improve and secure open spaces. The levy funds have been used for the City to acquire land for P-Patches in high-demand parts of the city and, importantly, levy funds have also been used to enhance existing P-Patches with features such as picnic tables, gazebos, or benches designed to make the sites more inviting for the general public. As discussed in chapter 3, the P-Patch gardeners and program administrators undertook a concerted effort to design community gardens so that they are accessible, usable and therefore valued by the general public. This effort ramped up in 1998, shortly before the first of the munificent open space bonds was approved in 2000, putting P-Patch advocates in a perfect position to apply the flush funding in a way that would yield visible returns for the public at-large. Seeing the benefits of improved P-Patch gardens likely made voters more amenable to approving the next open space tax levy that came before them—a positive feedback loop made possible by the particular political-economic conditions in Seattle.

The City of Seattle was willing to dedicate resources to the P-Patch community gardens in part because of the stable city budget and revenue from tax levies, and in part because of how local garden advocates have framed the value of urban agriculture. In addition to legitimizing urban agriculture as a community-building tool and source of food for those in need, leaders of the P-Patch nonprofit built a narrative around the value of community gardens as an amenity that would keep Seattle neighborhoods green and livable as the city took on more residents. Building off of existing ideas about what made Seattle special, such as its environmental amenities and pleasant neighborhoods, the P-Patch advocates constructed an effective framing for the value of community gardens in contributing to Seattle’s place-legacy . As the city grew and neighborhoods densified, community garden advocates argued that the P-Patch program should also grow as a way to maintain residents’ quality of life . Essentially, garden advocates used a framing that would appeal to the growth coalition: exchange value could continue to increase along with concession of a relatively small amount of the city’s land preserved for use value. Seattle’s garden advocates had constructed this sophisticated narrative by the mid- 1990s, and in the early 2000s Richard Florida outlined a theory of “creative cities” that essentially describes the alignment of certain kinds of use value with exchange value. As the US economy is shifting away from manufacturing, Florida argued, continued growth derives from an ascendant group of workers he called the “creative class”—people who work in science, technology, engineering, design, and other knowledge-based sectors . Because their work is intellectual rather than physical, these individuals are not as tied to particular locations, and they can choose to live in whichever cities they find attractive; in other words, particular types of use value can serve as a basis for increasing exchange value. The types of use value most important to the creative class include diversity, individual expression, and loose community with many weak social ties . Indeed, Florida highlighted Seattle as a creative city with all the ingredients to attract the creative class, and the P-Patches are exemplary of the urban character that Seattle was offering: they are filled with art and with all different kinds of people getting to know one another in loose communities . Without having the vocabulary of creative cities, P-Patch advocates in the 1990s framed the value of their gardens for city leaders in terms that align well with attracting the creative class. While the theory of creative cities appears to offer a resolution to the tension between use and exchange value in urban growth dynamics, in reality the tension is simply displaced. Urban growth entrepreneurs were quick to take up Florida’s ideas in their development strategies, and critics were equally quick to decry the downsides .

Seattle and King County give citizens official decision-making powers in regard to certain tax policies

Seattle residents have organized resistance to more local political concerns in the 1960s and again in the 1980s, with campaigns to change the municipal government’s direction and increase its accountability. The officials elected under these campaigns were integral in creating and supporting the P-Patch Program, providing public funding and land for an activity that residents wanted to enjoy. Civic conventions in Seattle include ideas about organizing to challenge elites in order to assert resident interests, and also about neighborhood-level governance. The public is used to local initiatives and expects that residents in a particular neighborhood will be able to participate in decisions about their community . These conventions have formalized into civic infrastructure such as a large, active network of neighborhood associations; district councils that represent hyper-local interests in conversation with the city; and a Department of Neighborhoods that is tasked specifically with responding to resident interests. As described on its website, the Department of Neighborhoods exists to “provide resources and opportunities for community members to build strong communities and improve their quality of life. Through our programs and services, we meet people where they are and help neighbors develop a stronger sense of place, build closer ties, and engage with their community and city government” . The City of Seattle Department of Neighborhoods oversees a Neighborhood Matching Fund, similar to Milwaukee’s CIP grants, that awards public resources to proposals that engage the community in making improvements that residents desire. Civic conventions in Seattle dictating an active, grow tray ongoing role for the public to participate in governance have contributed to the creation of robust infrastructure for asserting and actualizing resident interests. Both the ideas and infrastructure in Seattle’s civic conventions have benefitted the PPatch community gardens and advocates’ efforts to preserve them. With a multi million-dollar annual budget, the Neighborhood Matching Fund has proven invaluable for building, improving, and legitimizing the city’s community gardens .

The infrastructure of neighborhood associations and district councils was tapped in the 1990s both to legitimize residents’ desire to save a threatened garden and to mobilize the public around Initiative 42, a policy that effectively makes permanent all of the gardens on public land . Ideas about challenging elite control and respecting neighborhoods no doubt helped galvanize the public to support Initiative 42, which garnered almost 24,000 signatures in a matter of months. The flow of resident input in governance through structured channels, such as from neighborhood associations to district councils to the Department of Neighborhoods or from residents participating in the formalized neighborhood planning process of the 1990s, has made clear the widespread appreciation for P-Patch community gardens and legitimized their continued presence. Overall, Seattle has very strong civic conventions supporting citizens’ role in governance, creating numerous opportunities for garden advocates to both provide input directly to city officials and mobilize the public when more pressure was needed.Comparing against Milwaukee and Philadelphia, data from interviews and documents demonstrate the prominence of participatory civic conventions in Seattle. Codes for neighborhood association, citizen advisory committee, bottom-up governance, citizen voice, elected official accountability, neighborhood planning, and public hearing were all the most frequent in Seattle documents and interviews out of the three cities I investigated. Civic ideas and infrastructure have supported public engagement in governance decisions related to PPatches and also the assertion of how much use-value residents get from the gardens. Furthermore, as the P-Patch Program expanded over time, encompassing more land and requiring more public resources for administration, the infrastructure created by Seattle’s civic conventions facilitated feedback that helped program leaders and garden advocates adjust their operations in accordance with the wider public interest and thereby insulate the program from any challenges to its legitimacy.

Aligning gardening sites, activities, and communication with widespread values and concerns ensured that the P-Patch program remained popular and continued to receive public resources over time. Since the program’s inception, P-Patch leaders had invited city officials to “harvest banquets” and other opportunities for positive press. In the 1990s, leaders of the nonprofit supporting the P-Patches encouraged gardeners to significantly increase their contact with the city’s elected officials beyond the annual meeting. Over the course of the 1990s, as their interactions with elected officials made clear what aspects of the program were most valued by the broader public, P-Patch advocates worked to demonstrate the contributions that the community gardens made to widely shared civic priorities such as serving low-income communities, fostering multiculturalism, and cultivating a community atmosphere in Seattle’s neighborhoods. As the P-Patch program grew and increasingly formalized its operations, P-Patchers articulated the benefits of their program in terms of broadly shared values, taking advantage of another discursive opportunity structure that Seattle’s culture presented. Many gardeners made donations to food banks, and in the 1980s the program administrators began tracking contributions. When one of the program’s most active volunteers Wendy McClure organized a produce collection and delivery system called Lettuce Link, the reported food bank donations gradually increased. In editions of the P-Patch Post newsletter from the 1990s, gardeners were asked to measure and report the total pounds of produce they donated if they weren’t giving through Lettuce Link. The regular column for requesting help and equipment also noted the need for produce scales to ensure that donations could be weighed and tracked. In these ways the gardeners’ food donation activities were rationalized over time, and along with publicized events like the Day of Giving that began in 1994, the quantified donations helped build legitimacy for the P-Patch program as one channeling civic action to help low-income people. In addition to their food bank donations, P-Patch administrators and volunteers demonstrated their program’s commitment to low-income Seattleites by tracking how many low-income participants the program had, and by working with residents of the city’s public housing to build gardens specifically for them.

Especially once the program hit political turbulence in the mid-1990s, when gardeners mobilized the public in a somewhat confrontational strategy to preserve threatened gardens, city officials scrutinized the extent to which the P-Patch Program was serving a truly public purpose. The program’s leadership and its most vocal advocates were homogenously white and middle- or upper-middle class, so opponents of the program may have wished to paint it as a giveaway to already-privileged people. However, surveys of the gardeners in the mid-1990s showed a diverse constituency, with higher percentages of renters, low- and moderate-income people, and people of color than the city’s overall demographics. The program’s demonstrated diversity, and the addition of an initiative specifically benefitting immigrant gardeners in public housing, served to align the program with the value of multiculturalism important to many Seattle voters at the time. In order to ensure that the gardens continued to serve the public equally, officials in the Department of Neighborhoods worked with the program’s advocates to prioritize building new gardens in under served areas of the city . Over time, this has meant that the distribution of P-Patches across the city is genuinely more equitable in terms of access for low-income residents. As chapter 5 will detail, longitudinal spatial analysis demonstrates that between 1980 and 2019, P-Patch gardens have become more accessible overall; moreover high-poverty neighborhoods in Seattle were originally further from the PPatch gardens than their lower-poverty counterparts, hydroponic trays but that relationship has flipped over time such that proximity is greater for low-income communities today. Finally, in response to the “persistent skepticism” about gardens as a private use of public land, as Frank Kirk’s quote above describes, the P-Patch program leaders systematically incorporated public spaces into design and redesign plans for the gardens. In my analysis of PPatch Post newsletters, the code design for community was only applied twice for issues in the 1980s, but this code came up more and more often in the 1990s and especially from 1998 onward. New gardens were built with public features like benches or picnic tables, and such elements were added to the older gardens as they were renovated—especially when those gardens won Neighborhood Matching Funds to improve their spaces. Because of the civic infrastructure in Seattle, including numerous channels of communication between garden advocates, city officials, and other residents as well as the availability of public resources for garden development, P-Patch gardeners were able to maintain legitimacy for their organization and for the use of public land for urban agriculture by aligning their activities with widely shared values and public priorities. The priorities of city officials and P-Patch gardeners were not always perfectly aligned, however. As mentioned earlier, two P-Patches on public land were threatened by development in the mid-1990s. Gardeners first pressed their interests through the city’s bottom-up governance infrastructure, but it soon became clear they would not prevail through insider strategies . While Seattle’s political opportunity structure is usually amenable to resident interests, competing resident demands—and the growth machine’s drive for increasing exchange value—exerted strong countervailing influence in these cases.

When insider strategies proved futile, the garden advocates pursued outsider strategies to organize public opposition to the development plans. In this period of mobilization, Seattle’s civic conventions promoting distrust of elite control and expecting neighborhood involvement in decision-making helped form a discursive opportunity structure for framing the threat of garden loss in a way that would resonate well beyond the gardens. When the gardeners at the Mount Baker P-Patch learned that their city-owned lot was slated to be auctioned off for housing development, they joined with the local neighborhood association to come up with an alternative plan. With a grant from the Neighborhood Matching Fund, they conducted design charettes with P-Patchers, representatives of greening organizations, and other residents. The final product, a plan for Bradner Gardens Park, interwove P-Patches with numerous other uses such as a basketball court, family picnic area, public art, and native planting demonstration gardens. Advocates for Bradner Gardens Park presented the plan to city officials, and also visited the meetings of neighborhood associations from across the city to gain their endorsements. They built up legitimacy for the Park proposal through the civic infrastructure of Neighborhood Matching Funds and neighborhood association endorsements, and they framed their proposal as the epitome of neighborhood planning, civic participation and collaboration among diverse groups in a community. City leaders remained steadfast in their desire to see housing on the site, however, so the garden advocates devised an initiative to prevent the auction. With the help of a former lawyer for the Parks Department, whom they had met at one of the neighborhood association meetings, park proponents drafted the Protect Our Parks Initiative, or Initiative 42. The initiative would prevent the city from repurposing any land used for parks purposes without immediately supplying a space of equal size and quality for the same purpose, in the same neighborhood. As they circulated the initiative to collect the necessary signatures, the group added an extra layer to their framing by highlighting how the Bradner Gardens Park site had been purchased with funds allocated specifically for park development, arguing that under the mayor’s logic for selling it, no parks in the city were safe from development. Longstanding civic conventions opposed to political elites making backroom deals and instead promoting neighborhood-level planning meant that this argument resonated widely. Advocates for the Interbay P-Patch similarly framed their development threat as a betrayal by the city. Interbay P-Patch had been built in 1974 on land intended for a golf course. The garden was relocated in 1992 to make room for the long-planned course, and gardeners were told this new location would be permanent. The mayor even buried a time capsule at Interbay commemorating the 20th anniversary of the P-Patch program, to be unearthed on the 40th anniversary in 2013. In the golf course design Request for Proposals, the Parks Department stipulated that the P-Patch had to stay in its current location. However, the winning bidder followed up by saying that a north-facing driving range could increase revenue, a change to the design which would require moving the P-Patch again. Public hearings for the plan saw strong citizen input on both sides of the issue, and it was well covered in the local newspapers. In their letters to the editor and public comments, the gardeners invoked the idea that elected officials were reneging on their previous deal.

Correlations in variables measuring racial composition also required attention

The case of Seattle’s P-Patch Program, and the volunteer-led nonprofit advocacy organization that arose alongside it, demonstrates the clearest example of how an organization was able to pivot from community-based service provision to movement organizing , while largely maintaining its own legitimacy and augmenting the legitimacy of urban agriculture with a more compelling narrative about its potential benefits. The Seattle P-Patch Program was founded in 1973, when the City of Seattle stepped in to pay the property taxes of Rainie Picardo , who had been allowing neighborhood residents to garden individual plots on his former truck farm. The $950 expense from the city’s general fund was legally justified as support for residents’ recreation, and Council members advocating for the move also argued that it was a unique opportunity tohelp needy families feed themselves during an economic downturn. In 1974, due to the program’s huge success, the Picardo Patch was joined by ten additional community garden sites in different neighborhoods; since then, the P-Patch Program has continued its expansion to now include nearly 90 gardens citywide. At first, the program was administered by the Department of Human Resources because of its goal of feeding people. In 1997, the program was moved to the Department of Neighborhoods with the recognition that one of its primary effects was to build community among residents who wouldn’t otherwise know each other. In the Department of Neighborhoods, the P-Patch Program thrived under the leadership of department director Jim Diers. With a background in Alinsky-style organizing, Diers took to heart the department’s mission to act on residents’ ideas rather than imposing initiatives from the top down. With Diers leading the Department of Neighborhoods, how to trim cannabis new gardens were added in many neighborhoods where residents wanted them, and existing gardens made improvements that increased their appeal for the non-gardening public.

Diers provided steady leadership that saw the program grow and become more popular, but the framing to legitimize urban agriculture in Seattle had been established in earlier decades through the organizing efforts of volunteers leading the P-Patch nonprofit. Only a few years after the city government established the P-Patch Program, gardeners organized a nonprofit that has continued to operate alongside the program and fulfills functions that the public entity cannot take on. Originally named the P-Patch Advisory Council and now called GROW Northwest, the P-Patch nonprofit has had a different structure and has undertaken different initiatives over the years. Some of its primary, long-running activities have been advocating for favorable municipal policy, fundraising, paying plot rental fees for low-income gardeners, purchasing and holding title to gardens that were formerly privately owned, purchasing liability insurance for the gardens, serving as the fiscal sponsor for individual garden fundraisers, and facilitating communication among gardeners . The P-Patch nonprofit has effectively coordinated gardener activities and talking points, helping to streamline the program’s operations, maximize its impact, and legitimize PPatches in the eyes of the wider public. Evidence from interviews and issues of the P-Patch Post newsletter makes clear that over the program’s history, gardeners consciously organized their efforts and built the legitimacy for urban agriculture around the food production and community building aspects of the P-Patches. In the late 1980s, dedicated P-Patch volunteer Wendy McClure started an initiative called Lettuce Link that systematized food bank donations by coordinating a schedule of drivers from different gardens and providing information about the closest food banks for different sites. Over time, Lettuce Link installed storage bins, scales, and tracking lists at many of the gardens in order to facilitate measurement and annual reporting of the program’s donations to food banks.

Gardeners I interviewed in 2016 would readily emphasize that the program had donated over 40,000 pounds of fresh, organic produce to local food banks the previous year. These interviewees understood that reporting a specific amount of food donated helps to make the gardens’ public benefit clear for city officials and any potential skeptics. As a result of Lettuce Link and the gardeners’ efforts to demonstrate the extent of their food bank donations, P-Patches were incorporated into the city’s strategic planning for food security, first undertaken in the mid-2000s. The P-Patch Program director was included on the Interdepartmental Team developing the city’s Food Action Plan, a group which also included at least one P-Patch gardener among the city employees involved. In order to increase food security and local food production, the Seattle Food Action Plan makes recommendations under Strategy 1, “Prioritize food production as a use of land,” and Strategy 2, “Develop and support programs to produce food on City-owned land,” that specifically advise implementing policies to support and expand the P-Patch program . The process of gardeners systematizing their activities, and then gaining additional recognition and legitimacy through the city’s actions, is characteristic of the interplay between city staff and the P-Patch nonprofit over the history of the P-Patch Program. The case of Seattle suggests that an organizational structure of a city gardening agency supported by a gardener-led nonprofit is a stable and effective model for developing, maintaining, and defending urban agriculture. Through a similar process, P-Patch participants gradually amplified the community building benefits of community gardens. In all three cities, the benefit of increased social cohesion among diverse people is widely understood by gardeners and urban agriculture advocates .

However, in Seattle this social benefit was more clearly documented, and mobilized more in framing the legitimacy of urban agriculture as a land use, than it was in either Milwaukee or Philadelphia. As will be described more in Chapter 3, the process for documenting community-building in Seattle’s gardens was first evident in the PPatch Post, which ran a series of statements called “I Love My P-Patch Because…” from 1989-1993. These gardener testimonials offered many reasons to value the P-Patches that span almost the full “panacea narrative” attesting to urban agriculture’s wide range of potential benefits, but among these testimonials the community-building power of P-Patches is the most commonly noted benefit, with comments such as “I like my neighbors too: There’s always someone nice to talk to when I go to the garden” . In 1995-1997, when P-Patch advocates were pressuring the city to preserve a threatened P-Patch, and then appealing to the public to pass an initiative preventing the city from repurposing its garden sites, they emphasized how the gardens brought different kinds of people together and contributed to the neighborhood character of Seattle . In a 1998 edition of the P-Patch Post, the president of the P-Patch nonprofit explained the feedback advocates had received about how much the community-building potential of gardens mattered to decision makers and the public. Analysis of P-Patch documents shows that from the late 1990s onward, codes for diversity and design for community were much more frequent than they had been in the 1970s and 1980s. The latter code reflects interplay with city program staff who began to discourage fencing in the gardens, and the wider Department of Neighborhoods staff, who approved numerous grant applications from individual gardens seeking to add publicly accessible community-building features, such as picnic tables and benches, in garden improvement projects. Over time, the work of both the P-Patch Program and the P-Patch nonprofit have contributed to the longevity, popularity and security of community gardens in Seattle. Through the early 1980s when the city faced budget cuts, vertical growing system funding for the P-Patch Program shrank dramatically, and higher plot fees combined with reduced services caused foreboding rates of attrition . During these lean years, the program survived with two part time staff, Barbara Donnette and Barbara Heitsch, who according to interviewees familiar with the program’s early history and the P-Patch Post from that time, worked well beyond the hours they were being paid for. Moreover, the P-Patch nonprofit has relied solely on volunteer labor for its entire history. Almost every P-Patch Post newsletter contains a long list of acknowledgements for donations, tasks completed, and group initiatives fulfilled; indeed, the production of the P-Patch Post itself has been accomplished almost entirely through volunteer labor . The P-Patch nonprofit has been led by a series of extremely dedicated volunteer presidents, board and committee members, and the P-Patch Post attests to the organization’s ceaseless effort to recruit and train new leadership from among the program’s gardeners. Reviewing the program’s history through its newsletters reveals a remarkable level of dedication on the part of many gardeners, and even some non-gardeners, whose combined efforts have built, maintained, enhanced, and defended Seattle’s P-Patch community gardens for almost 50 years. The contributions of these volunteers should not go underappreciated, for the program would never have achieved such reach and longevity without them; however, making such a prodigious time commitment is not possible for everyone. Relying on volunteers and people who can accept low salaries to run an organization means that its leaders are likely to be relatively privileged. Indeed, for much of the P-Patch Program’s history, the leadership demographics have been far whiter than that of program participants overall .

The PPatch Program has counted significant numbers of Southeast Asian refugee families among its gardeners since the mid-1980s, and surveys in the 1990s showed that the program’s demographics were more racially diverse than the city overall. However, program staff and nonprofit leadership alike were virtually all-white until the mid-2000s. This is not to say that active racial bias was applied in hiring and appointing leaders, rather that low or no pay likely served as a barrier for gardeners of color in light of persistent racial wealth gaps . The demographics of P-Patch leadership are likely to have impacted the perspective from which both organizations operated, especially the framing of the benefits of community gardens. P-Patch volunteers assiduously grew and measured their food bank donations, which have no doubt been helpful for food insecure Seattleites; however, produce distributed through food banks treats the symptom of hunger, rather than its root cause of economic inequality . Likewise, community building is an important and hard to measure process for maintaining healthy social dynamics in cities . However, when community-building is framed as a relief-valve for the pressures of increasing urbanization, as was often the case in the P-Patch’s framing, it reflects an ideological orientation that seeks to accommodate rather than challenge ideas of inexorable urban growth. Moreover, as Chapter 4 will explain, the sense of community engendered in the P-Patches is part of what has made Seattle such an attractive city for the “creative class” whose purchasing power and population growth have contributed to gentrification in most Seattle neighborhoods. Among the three case-cities, Seattle’s urban agriculture movement, in particular the organized efforts to preserve P-Patches in the 1990s, has been the most effective so far at accomplishing policy change that secures community gardens as a permanent land use. The organizational structure, pairing a city-run garden program with a nonprofit fundraising and advocacy organization, appears to have worked very well to develop and manage gardens in a stable way while facilitating gardener mobilization when needed and encouraging leadership from gardeners themselves. However, gardeners from more marginalized communities have almost never taken on these leadership roles, and the mobilization to protect gardens has not addressed the question of securing low-income gardeners themselves in the neighborhoods they have helped to shape.Urban agriculture has gained legitimacy as a land use in each of the three case-cities, and the benefits with which it is most associated reflect the strategies that the main gardening organizations in each city have pursued to gain and maintain their own legitimacy. In Milwaukee, MUG attempted to gain legitimacy as a land trust, but when they were unsuccessful in convincing a sufficient donor audience that garden preservation was a meaningful cause, MUG ultimately joined Growing Power, Walnut Way and the Victory Gardens Initiative in focusing on youth engagement and employment. Together, these organizations built legitimacy for urban agriculture as a tool for job training and economic development. Philadelphia Green gained legitimacy as a program of the well-established Pennsylvania Horticultural Society, and in working to maintain its legitimacy for the organization’s donor base, program leaders demonstrated how greening can work as a tool for blight removal and neighborhood revitalization. However, PHS and Philadelphia Green did not invest as much effort in building the program’s legitimacy with urban gardeners themselves, and another group has claimed that role. When community organizers were mobilizing to change city policy and defend threatened gardens, they ultimately removed PHS from their coalition and formed Soil Generation, an organization staking its legitimacy on its representation of Black and Brown growers in the city.